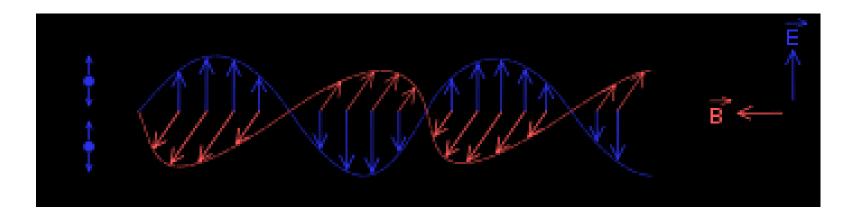
Antenna? What's That?

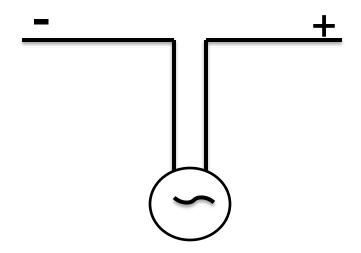
Chet Thayer WA3I

Space: The Final Frontier


- Empty Space (-Time)
 - Four dimensional region that holds "everything"
 - Is "Permeable": It requires energy to set up a magnetic field within it.
 - An oscillating magnetic field dissipates energy, i.e. "radiates"
 - Light propagates through it.

Magnetic Field

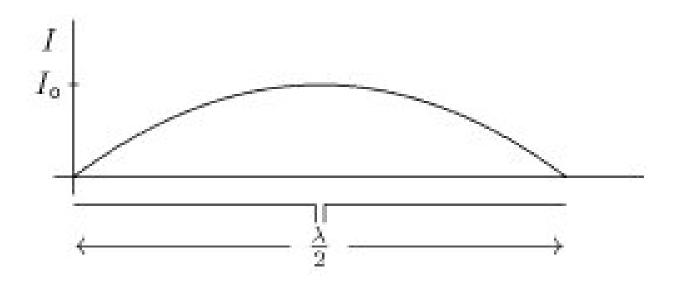
- Relativistic force created by an electric current
- An oscillating electric current creates an oscillating electric and magnetic field
- Under the right conditions, an oscillating electric current will "radiate" electromagnetic energy


Light – Electromagnetic Radiation

- Light is a magnetic (B) and an electric field (E) propagating together
- $\lambda \times f = c$ where λ is wavelength f is frequency c is speed of light

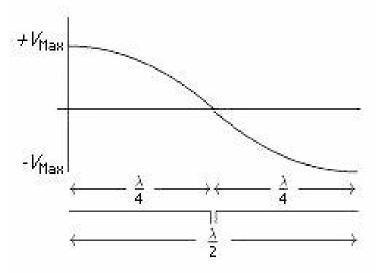
Antenna

- An electrical conductor
- Usually of a specific length
- An oscillating electric current is fed to it:



Resonant Antenna

- If the conductor is ½ a wavelength long, the current will resonate
- Like a water sloshing in a trough, the electric current will flow back and forth along the conductor in synchrony with the applied electric current.


Current in a ½ Wavelength Antenna

• Like the flow of water in a sloshing trough, the current in a $\lambda/2$ antenna is highest in the center and lowest at the ends:

Voltage in a ½ Wavelength Antenna

 Like the accumulation of water at the ends of a sloshing trough, the voltage in an antenna is highest at the ends and lowest in the middle:

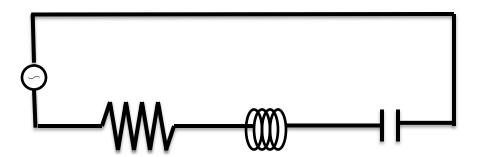
Voltage on the Antenna

- Measured voltage between any point on the antenna and "ground" will vary sinusoidally
- Measured current at any point in the antenna will also vary sinusoidally

What is Ground?

- Ground is an object large enough to absorb a reasonable amount of electrical charge and not become measurably charged itself. For example: the Earth.
- DC Ground has low resistance to the Earth.
- AC (or RF) Ground has low impedance (both inductive and capacitive) to the Earth.

Grounded?


- Anything connected by a low resistance conductor to a ground rod will be at DC ground.
- However, a length of wire will have inductive reactance. To be an AC (RF) ground, the wire should be less than 5% of a wavelength.

Distance to RF (AC) Ground

Frequency	5% of Wavelength
60 Hz	820,000 Feet
3.5 MHz	14.1 Feet
28 MHz	1.8 Feet

Antenna Electrical Equivalent

 All antennas appear electrically to be equivalent to a resistor, inductor, and capacitor in series:

 Because charge is accumulating at the ends of the antenna, there is capacitance at the feed point:

•
$$C = \underline{1}$$

 $2 \pi f X_c$

where: C is the capacitance in Farads

f is the frequency

X_c is the capacitive reactance in ohms

 Because the electrical current creates a magnetic field, there is inductance at the feed point:

• $L = 2 \pi f X_L$

where: L is the inductance in Henrys

f is the frequency

X_L is the inductive reactance in ohms

• At resonance, $X_c = X_L$

•
$$f = \frac{1}{2 \pi \sqrt{LC}}$$

- Because the antenna is radiating energy, (and because the inductive reactance and capacitive reactance "cancel" each other), the antenna looks like a resistor at the feed point
- In free space, the value of that resistor is approximately 50 ohms

Power Dissipation

- Power Dissipation = $I^2 \times R$
- Since I is highest in the center of the antenna, that is where most of the radiation is emitted
- An inverted Vee antenna puts the highest current portion high in the air (a ground mounted vertical puts the highest current at ground level!)

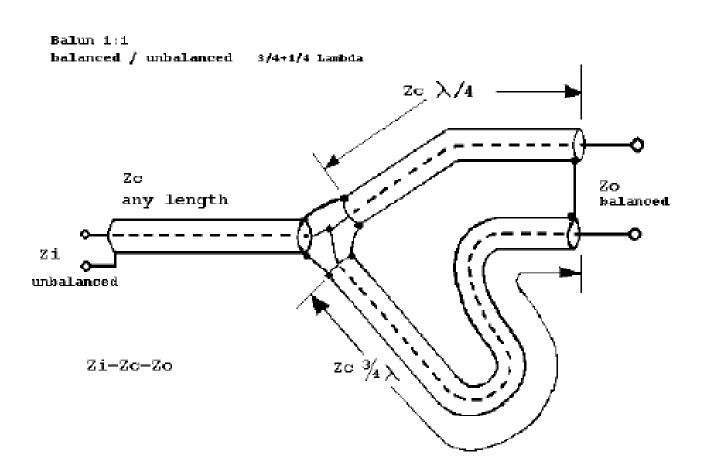
Resonant Antenna Length

 Formulas can be used to calculate the length of a half wave resonant antenna:

Length in feet =
$$\frac{492}{f \text{ (MHz)}}$$

Length in inches =
$$\underline{5904}$$

f (MHz)


Antenna "Modeling"

- X_L, X_C, Length, and 1/f are all directly proportional so they scale
- For example, take the dimensions of a 3 element 6m beam and multiply them by 5.
 - The new antenna will resonate at50 MHz/5 = 10 MHz
 - X_L will be 5 times higher
 - X_C will be 5 times higher
 - R will be about 50 ohms

Dipole Demonstration

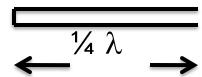
- Experiments will be done at 146 MHz
 - $\lambda/4 = 19$ inches
 - Feed line is electrically $\lambda/2$ long = 31.9 inches (length = $\lambda/2$ * Velocity Factor (0.84))
 - Chosen so measured impedance equals antenna impedance
 - Using MFJ-269 Pro Antenna Analyzer
 - Giving SWR, Resonant Frequency, Reactance, and Resistance of the Antenna

1 to 1 Balun Design

Antenna Demonstrations

- 1. Demonstrate resistors (@ 14 MHz and 146 MHz)
 - 51 Ohms
 - 100 Ohms
 - 27 Ohms
- 2. Demonstrate R/L/C circuit
- 3. Demonstrate ¼ λ Vertical
 - Without balun
 - With balun
 - With Inductors on feed line

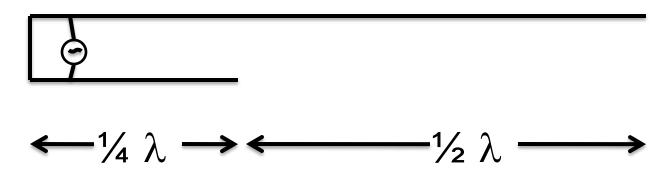
Antenna Demonstrations


- 4. Demonstrate $\frac{1}{2}\lambda$ horizontal dipole (and Measurement of C and L)
- Demonstrate "top hat" horizontal dipole (2 hats)
 - Where is the high current?
 - Where is the radiation coming from?
- 6. Demonstrate "top hat" $\frac{1}{4}\lambda$ horizontal monopole (1 hat)
 - Like a 2 meter HT?

Antenna Demonstrations

- 7. Demonstrate short $\frac{1}{4}\lambda$ vertical with "top hat"
- 8. Demonstrate $\frac{3}{4}\lambda \frac{1}{4}\lambda$ Dipole
- 9. Demonstrate $\frac{3}{4}\lambda$ "top hat"

The 1/4 Wave Stub


- ¼ λ Stub
 - Two parallel wires, shorted at one end
 - Looks like:

- Electrically: It presents an open circuit (high impedance) for RF at frequency f (=c/λ) at the open end.
- (Students: If the stub is open, what impedance does it present at the open end?)

Time to Think Outside the \square .

 Take the full wave antenna and fold it at the feed point:

 This is a half-wave antenna fed with a quarter wave stub.

Vertical Demonstration

- 10.Demonstrate $\frac{1}{2}\lambda$ vertical ("J" pole)
- 11.Demonstrate non-resonant vertical
- 12.Demonstrate non-resonant vertical with a stub.
- 13.Demonstrate resonant 1 λ J-pole antenna with both ends grounded!
- 14.Demonstrate resonant $\frac{3}{4}\lambda$ J-pole antenna with both ends grounded!

Common Antennas

- One ¼ λ monopole fed against ground
- Two $\frac{1}{4}$ λ monopoles connected together (a $\frac{1}{2}$ λ dipole, center fed)

Less Common Antennas

- Two $\frac{1}{4}$ λ monopoles connected together where one or both are shortened with (a) capacitive hat(s)
- One $\frac{1}{4}$ λ monopole with a capacitive hat fed against ground
- ¾ λ conductor with one end at ground potential (End fed ½ λ "J"-pole)
- A full wave conductor with both ends at ground potential!

Where's Waldo?

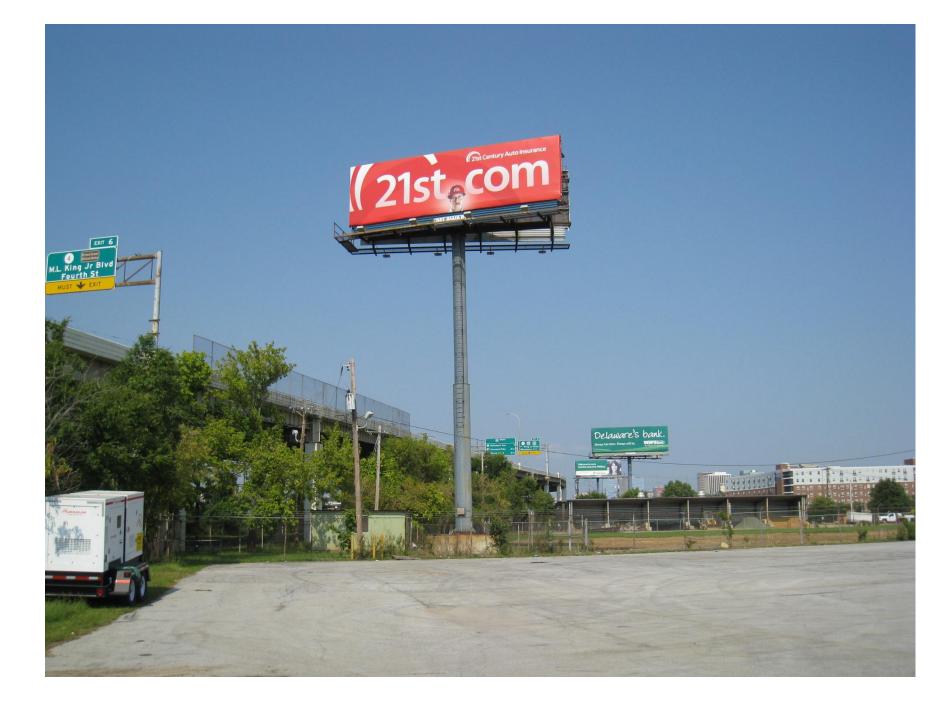
Find the antennas in the following pictures

Light Pole

- 40 ft high
- Small capacitive hat
- Approximately ¾ λ on 20m
- Would probably also work on 17m, 15m, 12m and 10m
- Feed two poles for a phased array?

Light Pole on 202

- Maybe 25 ft including horizontal section
- Approximately ¾ λ on 12m
- Would probably also work on 10m


Traffic Sign + Supports

- Total length base to base: 300 ft
- Full wavelength on 80 m
- Would probably also work on 40m and 20m

Light Standard at Frawley Stadium

- Total height 130 ft
- Approximately $\frac{3}{4}\lambda$ on 40m (longish)
- Would probably also work on 30m and 20m

Billboard at Frawley Stadium

- Total height 60 ft, Great "top hat"
- Approximately $\frac{3}{4}\lambda$ on 40m (top hat would compensate for short length)
- Would probably also work on 30m and 20m

Power Poles Along Tracks

- Total length base to base: 300 ft
- Full wavelength on 80 m
- Would probably also work on 40m and 20m

So, What's an Antenna?

Many things you never considered!!!